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Abstract 

The "visual motion" problem consists of estimating the motion of an object viewed under 
projection. In this paper we address the feasibility of such a problem. 

We will show that the model which defines the visual motion problem for feature points 
in the euclidean 3D space lacks of both linear and local (weak) observability. The locally 
observable manifold is covered with three levels of lie differentiations. Indeed, by imposing 
metric constraints on the state-space, it is possible to reduce the set of indistinguishable states. 

We will then analyze a model for visual motion estimation in terms of identification of 
an Exterior Differential System, with the parameters living on a topological manifold, called 
the ((essential manifold", which includes explicitly in its definition the forementioned metric 
constraints. We will show that rigid motion is globally observable/identifiable under perspective 
projection with zero level of lie differentiation under some general position conditions. Such 
conditions hold when the viewer does not move on a quadric surface containing all the visible 
points. 

I. Introduction 

Animals face everyday tasks which require the ability t o  estimate the relative motion between them 
a n d  the objects populating the environment (or the environment itself), such as walking, avoiding 
obstacles, grasping objects etc. . Only recently, dynamic estimation and control techniques have 
given encouraging results for designing automatic systems which mimic such abilities [13, 12, 20, 
21, 3, 261. 

If we restrict our attention to  motions inside a "static scene9', then the rigid motion constraint 
a n d  the perspective projection map define a nonlinear dynamical model. Motion estimation may be 
formalized in terms of parameter identification and/or state estimation of such a model. Tradition- 
ally the estimation task has been performed using an Extended Kalman Filter (EKF) [31, 8, 291. 

In this paper we address the feasibility of estimating the motion of a rigid object from perspective 
observations using a dynamic model. 

*Research funded by the California Institute of Technology, ONR grant N00014-93-1-0990 and an AT&T Founda- 
tion Special Purpose grant. This work is registered as CDS Technical Report GIT-CDS 94-001, California Institute 
of Technology, January 1994 - revised February 1994. Submitted to the invited session on "Dynamic Vision, System 
Theoretical Methods and Control Applications" at  the 33rd IEEE conf. on Decision and Control, Florida, 1994. 



A crucial issue in dynamic estimation/identification is the observability of the model, or the 
identifiability of its parameters. We will see that the model which "defines" the visual motion 
problem for feature points in the euclidean 3D space is neither linearly observable nor locally 
weakly observable. It  is possible, as we will see, to reduce the set of locally indistinguishable states 
by imposing metric constraints on the state space; however, the model suffers some structural 
limitations which make the local-linearization based methods porely conditioned and not robust 
enough to  be used in real world applications. 

Rigid motion is indeed globally observable from perspective projections, once the problem is 
formulated in the appropriate topological space. In this paper we analyze a new formulation for 
motion estimation [47] in terms of identification of an Ezterior Diflerential System [7] with the 
parameters living on a topological manifold, called the "essential manifold". Using some results 
from the computational vision literature, we show that this model is globally observable without 
any lie-differentiation under general position conditions. Such conditions are met when the object 
and the path of the center of projection cannot be imbedded in a quadric surface [15, 371, and can 
be verified using a simple rank test. 

1.1 Existing literature and relations to previous work 

The  use of dynamic observers for estimating scene structure and/or motion dates back to  the 
eighties [16, 6, 36, 231. These works assumed that either the viewer's motion or the shape of the 
object was known. More recent works deal with the estimation of both structure and motion 
recursively from perspective projections [24, 5, 42, 1, 491 using an EKF. The schemes are based 
upon minor variations of the same model, and none of them addresses the issue of its observability. 
There is a also a vast literature on stereo-motion and on batch schemes for recovering structure 
and motion; for an extensive review see [i4] and references therein. 

Our work is somehow orthogonal to [17, 111, in what they assess the feasibility of structure 
estimation for known motion. We study instead the problem of motion estimation for unknown 
structure. Once motion is known, structure is linearly observable from the rigid motion model. 
Therefore if we estimate motion, and the estimates are properly weighted through the second or- 
der statistics of the estimation error, any "structure from motion" module incorporating motion 
error (for example 142, 491) may be used for estimating scene structure reliably, Note that motion 
and structure play interchangeable roles: when either one is known, the other can be uniquely de- 
termined. However, motion can be reconstructed independent of structure, and structure estimates 
play a role only in disambiguating multiple solutions and in propagating scale information across 
time. 

The model described in the last part of this paper is inspired by [34], and the results used for 
proving its observability/identifiability are from [37, 151. 

1.2 Organization of the paper 

In section 2 we define and formalize the visual motion problem, first in full generality, and then 
restricted to the case in which the scene is described by a number of "feature points" in the euclidean 
space. In this case the motion problem is defined by the rigid motion constraint and the perspective 
projection map. 

In section 3 we show some alternative formulations of motion estimation in terms of inver- 
sion/estimation or identification/estimation of a nonlinear dynamical model. Motivated by the 
limitations of such models, we reformulate the problem in terms of state estimation of a nonlinear 
model defined on a linear state-space, raising the issue of observability. 



In section 4 we address the linear observability and local (weak) observability of the model 
which defines the motion problem in the case of feature points in the euclidean 3D space. We 
show that it is neither linearly observable nor locally observable. We show how to  reduce the set 
of indistinguishable states by imposing metric constraints on the state space. However, the local 
observability codistribution reaches full rank after three levels of bracketing, indicating that the 
model is hardly observable. 

In section 5 we will describe a formulation of motion estimation as identification of a systems 
in exterior dijjferential form, with the parameters living in a topological manifold, which we call the 
"essential manifold". The model is globally observable with no level of differentiation once general 
position conditions hold. Such conditions are characterized using a simple rank test. 

2 Visual motion and structure estimation 

So far we have discussed about scene structure and motion estimation without referring to a specific 
scene (or object) representation. In a systems-theoretic framework, the structure of an object 
is encoded by a finite number of "feature points" on a differentiable manifold. These could be 
the coefficients of polynomial curves or splines fitting the contours of the object, or parameters 
describing locally its surface or, in the simplest case, points in the euclidean 3D space. In such a 
case the "structure manifold" is simply R3, and the features correspond to salient regions of the 
object, as for example visible corners. In what follows we assume we are given the "correspondence" 
of projection of feature points across time, i.e. at each time instant we measure the projection of 
each feature point onto the image plane (or retina) and we know which point corresponds to  which 
across time (for a review of some available methods for solving the correspondence problem see [2]). 

Since we are interested in relative motion, it is equivalent to assume that the viewer is moving 
inside a static scene, carrying along his reference frame (viewer-centered representation) or that 
the  scene is a rigid object which is moving in front of the viewer together with its reference (object- 
centered represent at ion). 

Viewer-centered representation The viewer maintains a local coordinatization of the feature 
space, which changes in time as he moves inside the scene. Meanwhile he perceives the 
projection of the scene onto its sensor (retina or CCD), which corresponds to measurements 
of a time invariant projection of the feature manifold in the motion-dependent (viewer-based) 
coordinatization. 

If the viewer moves inside a static scene, his motion between two time instants is described as 
a point in SE(3),  the group of rigid transformations of IR3 [39]. In this case we may imagine 
the viewer-centered coordinates as a family of diffeomorphisms parametrized by points of 
SE(3). If the viewer moves with constant velocity, motion is represented by a single point, 
otherwise he describes a whole path in SE(3). 

Object-centered representation Alternatively we may imagine a "static" coordinate parame- 
trization of the feature space and the viewer measuring the output of a projective map which 
is time-varying according to the motion of the scene. If the scene is moving rigidly, the viewer 
measures the output of a family of maps from the feature manifold onto an appropriate 
real-projective space, parametrized by points in SE(3). 

These two viewpoints, object-centered and viewer-centered, are substantially equivalent, since they 
may be transformed one into the other via a motion dependent diffeomorphism; however, each has 
i t s  own advantages, depending on the application. 



In both cases the visual motion problem consists in estimating the path in SE(3) describing 
the relative motion between the viewer and the object. 

2.1 Formalization of the model 

Let us call N the feature n-manifold, p E N a feature point; M is the motion manifold, q c M 
represents motion, 

represents a perspective projection. Let N and @ denote the local coordinates correspondents of N 
and p. We suppose there exists a set of Cw compatible charts on N :  

The visual motion problem is formalized in the viewer-centered representation by a family of 
maps on 8 parametrized by q E M: 

where f is the map encoding rigid motion; f (@, g) = +q(fi), and 

is the viewer-centered local-coordinates chart of N 7  which varies in time as the viewer moves with 
q(t). Alternatively motion may be represented by its velocity: if q E M = SE(3), j@ = T.SE(3) t 
se(3) is the lie algebra of twists corresponding to rigid motions. In this case we formalize the visual 
motion problem using a famiIy of vector fields on &: 

The abject-centered representation corresponds to the model 

where 



Point-based visual motion 

Let us now consider a simple paradigm, in which p E M = R3 is a salient point in the scene, 
X G [X, Y, ZIT are its coordinates with respect to an orthonormal reference frame centered in the 
pupil of the viewer, with the Z axis pointing forward and X, Y arranged as to form a right-handed 
frame. Let tj = [V , RIT E se(3) represent the canonical screw coordinates of the rigid motion of 
the viewer (body velocity [39]). As the viewer moves, each point describes a vector field on lR3; in 
the viewer-centered representation, f (13, QI) is simply 

f (X, V(t), R(t)) = R(t) A X + V(t). 

If we represent motion between two time instants t and t + r, and velocity is held constant between 
the two samples, we have 

where (T, R) are related to (V9 R) via [39] 

In what follows we will assume r = 1 (constant sampling rate). 
T h e  map n is the trivial association of each p # 0 with its projective coordinates as an element of 
R P 2 :  

In  summary, if we represent the scene structure using points in the euclidean 3D space, the visual 
motion problem is defined by the constraints of rigid motion and perspective projection. For 
instance, in the viewer-centered instantaneous representation we have 

where x = [x, y, 1IT are the coordinates of the projection of the point X onto the image plane. 

3 Systems-t heoret ic characterization of visual motion estimation 

W e  have seen that, if the scene is represented by a set of n points in 3D space moving rigidly 
with respect to the viewer, the visual motion problem is defined by the rigidity constraint and the 
perspective projection equations. If Xi are the coordinates of the ith point and xi the corresponding 
projection, we may write 

X; = R A Xi  + V X(0) = Xo Q i = 1 : n  
x; = n(X;) + V; V; E N(0, R;) (3) 

where v; represents an error in measuring the position of the projection of the point i. Solving 
t h e  visual motion problem consists in estimating X;,V and R for all the visible points i, i.e. 



Motion reconstruction via state estimation 

I Motion reconstruction , 
vla mverslon~eshmatlon I 

Figure 1: Interpretation of rigid motion reconstruction as inversion/estimation or identifica- 
tion/estimation of a dynamic model. The problem is transformed into a state estimation task 

reconstructing both the input and the initial state of the above system from its noisy output (see 
fig. I). Alternatively motion may be viewed as a vector of unknown parameters in the model (3) 
which have to  be identified. 

In the present section we show that it is possible to invertlidentify the above system and solve 
for motion in a least-squares fashion; the solution is analogous to  that found in [22]. However, the 
strncture of the inverse system is intrinsically instantaneous, since the original model is driftless, 
and  hence it does not exploit the benefits of dynamic observers. 

3.1 Motion reconstruction via inversion/identiffcation of a nonlinear model 

Motion estimation may be viewed as an inversion problem for the model (3) when the initial 
s ta te  (structure) is unknown. It is well known that under certain conditions on the relative degree, 
i t  is possible to  invert a nonlinear system [28]. In order to do that, we compute lie derivatives of the 
output along the state vector fields until the components of the input appear. If the coupling matrix 
is nonsingular, we may invert it and reconstruct the input of the system from bracket combinations 
of its output. 

In our case the model is driftless, and therefore all the components of the input appear a t  the 
first level of differentiation: 

where 

If we observe enough points, we have an overdetermined system which we may solve for the motion 
parameters in a least-squares sense. Call Ci + [ & A ~  &] , we have 

where the symbol t denotes the pseudo-inverse. Note that C; depends on the depth of the point, 
Zi, which we do not know. 



In order to  reconstruct the initial depth it is necessary to observe it. Dynamic observers are in 
essence computing differentiations of the output until the matrix which couples the initial condition 
and the derivatives of the output (observability matrix or observability codistribution) has full rank. 
In our case, however, both the input and the initial state appear at the same level of diflerentiation, 
since the model is driftless. Therefore we may hope to recover either motion or depth with such a 
technique, but not both. 

I t  is still possible, however, to exploit the above constraint to recover rigid motion by solving a 
nonlinear optimization problem constrained to a linear subspace. Such a problem may be formulated 
as the identification of an Exterior Differential System, as it is done in [46]. See [22, 461 for more 
details on this formulation. 

3.2 Motion reconstruction as state estimation 

Because the model described in the previous section has no drift dynamics, left-inversionlstate- 
estimation reduces to  a static (instantaneous) procedure and hence it does not exploit the noise 
rejection properties of dynamic observers. 

One possible way to  proceed, based on the above considerations, is to  introduce some dynamics 
into the problem, using "dynamic extension9'. Instead of considering motion as the input of the 
system, we consider as input its time derivative, and insert motion into the state dynamics. 

If we view motion estimation as identification of the model (3), this "dynamic extension" corre- 
sponds to  transforming the identification problem into a state estimation task. This has been done 
in the literature of recursive identification since the early sixties (see for example 644, 10, 301 and 
references therein). In essence the parameters to be estimated are inserted into the state dynamics 
and  a Kalman filter is used as a parameter estimator (see figure 1). 

In both interpretations we are led to an augmented model, with the input being inserted into 
the  state dynamics: 

Since we do not know fv  and fn ,  the visual motion problem may be formulated as an "unknown- 
inputlstate estimation" problem. However, we may have some qualitative information about f v ,  fQ 
which we want to exploit, for example a dynamical model, when the camera is mounted on a moving 
vehicle. 

In absence of such information, fv and f~ may describe a statistical model. The simplest case 
is fv  = fS2 % 0, which corresponds to constant velocity (or "small acceleration"). A model often 
used is brownian motion: fv = Y V ,  fQ = VQ are white, zero-mean gaussian noises1 whose variances 
are  to be considered as tuning parameters. Note that the random walk model allows us t o  deal 
with time-verying parameters (when the variation is slow compared to the sampling period) and 
also the positive definite variance of the model error helps preventing saturation, when a Kalman 
filter is used to perform the estimation task. 

A crucial issue in state estimation using observers is of course observability of the model, which 
we address in the following section. 

'This notation is incorrect, since white noise is not integrable; indeed the notation is customary in statistical 
estimation, and we wiU adopt it here. 



4 Perspective local observability of rigid motion 

In this section we study the local observability of the model (3). We show that, in the case of 
constant velocity (or small acceleration), it is not locally observable. However, by enforcing metric 
constraints on the state space, it is possible to reduce the set of indistinguishable states. Some 
definitions and standard results on local observability may be found in appendix A. 

4.1 Linear observability 

We consider the linearization of the model (5): define A A 2 C 2 and A as in (4). Suppose 
for simplicity n = 1; it is immediate to see that 

T h e  observability matrix for the linearized system is hence 

T h e  above reduces, for planar motion, to the matrix 

which is easily seen to have rank 3, since the last two rows are a scalar combination of rows 2 and 
3 (and so are the subsequent rows). With a similar procedure the full matrix 0 is shown to  have 
rank 5, in face of a state space of dimension 9. The linearized system is therefore not observable, 
and  we say that the original model is not linearly observable. 

4.2 Local observability 

The  local observability space is defined as the set of the output functions and all their possible 
lie derivatives along vector fields in the accessibility algebra [28]. Under slow acceleration condi- 
tions, the vector field in (3) is autonomous, and therefore the observability space is spanned by 
{rr, Lfn-, . . . , Lgn- . . .) where f denotes the state vector field. The observability codistribution is 
spanned by dO 4 (dh 1 h E 0). The state manifold is Et9; the rank of the observability codistri- 
bution reaches its maximum of 8 after three levels of lie differentiation. 
The  null space of the observability codistribution, in case of nonzero forward translation, is: 

Null([dh, dLfh, dL;h, dL?h]) = Span [ & 1 0 0 0 ] . 



In the case of zero forward translation, after four levels of differentiation we have a null space 
spanned by 

In case of only lateral translation, the null space of the observability codistribution is spanned by 

when translation is along X, while for translation along Y we have 

In the case of pure rotation, a basis of the null space of the observability codistribution is obviously 

and all the points having the same projective coordinates are indistinguishable. In the case of 
nonzero forward translation, the set of states which are indistinguishable from [Xo Vo ROIT is 

which is a linear variety of dimension one, and similarly for the other cases. 

4.3 Global scale ambiguity: metric constraints on the state manifold 

Consider the solution X;(t, Xio, Vo, $20) of (5) starting from the initial condition Xio, Vo, Ro: 

if IIRoll # 0 
otherwise 

where 

I t  is immediate to  see that X;(t ,aXio,aVO,R~) = aXi(t,Xio,Vo,Ro) V XiO,VO,RO, t ,~ .  Since 
for central projection we have xi(t) = r (Xi)  = r(aX;) ,  we conclude that any initial condition 
alXio, alVo, R0 is indistinguishable from a2Xio, crzVo, Ro, for any possible al, a 2  E IR. 

This one-dimensional unobservable space is very familiar, as we experience that an object mov- 
ing in front of us produces the same impression of a similar one which is "twice as big, twice as 
far, and moving twice as fast". However, we may impose norm constraints on the visible objects 
or on the translational velocity in order to get rid of the scale factor ambiguity. For example, if we 
impose llVoll = 1, two initial conditions are indistinguishable only if a1 = f az. 

There is still some information which is hidden by the model (5): we know that, if an object is 
visible, it must be in front of the observer, i.e. 2; > 0 V i .  Moreover, no points are allowed t o  lie 
on the focal plane Z = 0 (plane at infinity), and therefore crl = a 2 .  

If we apply such metric constraints to the locally unobservable codistribution, we can reduce the 
set of indistinguishable states to the trivial set. However, an appropriate model should include such 
constraints explicitly into the state manifold. This may be done at the price of transforming the 
state from the linear space R' to the differentiable manifold with boundary Et2 x H I  x S2 x IR3 [43. 

We now summarize some of the limitations of the model (5): 



e The model is not locally observable. Metric constraints which make the model observable are 
not explicitly encoded in the state representation. 

e Three levels of lie bracketing are needed to cover the observable part of the state space. 
Indeed, we know that it is possible to estimate motion and structure from the first derivative 
of the projection of the points (optical flow) [34, 27, 151. 

The model has the property of being "block diagonal" with respect to the structure, so that 
the states corresponding to different points are independent. Indeed it is strongly intuitive 
that the more points are visible, the better the perception of motion ought to be. 

5 Global observability: mot ion est irnation as identification of an 
Exterior DiEerehial System 

In this section we describe an alternative model for formulating the visual motion problem which has 
been presented in [47] and is related to a motion representation first introduced bu Longuet-Higgins 
in [34]. 

Motion estimation is viewed as a problem of identifying a system in Exterior Differential Form [7] 
with parameters on a topological manifold, called the "essential manifold9' [47]. We show that the 
model is globally observable/identifiable with zero level of differentiation for any number of visible 
points. When more points are available, the redundancy may be exploited in order to reduce the 
effect of the measurement noise. 

5.1 The "essential model" 

Consider a point in 3D space, with coordinates Xi(t) in the viewer's reference. Let Xi(t + T )  be 
the  coordinates after a rigid motion of the viewer (T, R), of which (V, R) are the canonical screw 
coordinates [39] as in equations (1,2)~. 

It is immediate to see that Xi(t), X;(t + T )  and T are coplanar, and hence their triple product 
is zero. Once expressed in a common reference, for example the viewer's at time t, the coplanarity 
constraint becomes [34] 

Note that the same relationship holds for xi(t) and x;(t + T), since they represent the projective 
coordinates of Xi(t) and X;(t + T); TA E 4 3 )  is a skew symmetric matrix. After defining the 
essential matrix as Q R(TA), the essential constraint becomes 

Since there is an arbitrary scale factor in the above equality, we impose / / & I /  = IlTll = 1. It  has 
been shown [34, 15, 501 that this constraint is not only a consequence of a rigid motion, but it also 
characterizes it, in the sense that a sufficient number of constraints ( 6 )  allows us to characterize 
rigid motion [34]. The essential matrix was first introduced by Longuet-Higgins [34], together 
with a quasi-linear batch technique for estimating structure and motion from two views and more 
than  8 visible points. His technique was then extended and developed in [50, 19, 151. In [43] 

2Note that T  in this section differs from the one used in the previous section. Rigid motion is represented here as 
X(t + r )  = R ( X ( t )  - T ) ,  for consistency with the notation of [34]. 



the algorithm is implemented using three pipelined Singular Value Decompositions. Finally [47] 
proposes a recursive version of the motion estimation technique based on the essential constraint. 
The  essential matrices are points of the space 

which has the structure of an algebraic variety [15]. We now show that a slight modification of E 
is a topological manifold of cIass at least CO. 

Theorem 5.1 Let d,,,t(Q) be the triangulation function3, which gives the depth of a point from 
its motion Q and its projective coordinates x,  x'. Then E i I!? 17 di,:,(lEt:) is a topological manifold 
of class at least Co. 

Proof: 
E inherits the topology from IR9. Consider the map 

where U , V  are defined by the Singular Value Decomposition (SVD) [18] of Q = U C v T 9  V.3 
denotes the third column of V and Rz($) is a rotation of $ about the Z axis. As usual R is the 
rotation 3-vector corresponding to the 3 x 3 rotation matrix URz(;)VT and is obtained using the 
Rodrigues' formulae [39], which give in fact a local representation of S0(3)4. T is represented in 
sphericzl coordinates. Note that the map @ defines the locd coordinates of the essential manifold 
modulo a sign in the direction of translation and in the rotation angle of Rz, therefore the map 
@ associates to  each element of the essential manifold 4 distinct points in local coordinates. This 
ambiguity can be resolved by imposing the 'ipositive depth constraint", i.e. that each visible point 
lies in front of the observer [34, 351. Consider one of the four local counterparts of Q E E, and the 
function dXlxt : E -, IR1+l defined by 

<ni ,m'> 
with Z = IIm,112 i = 1 . .  , n mi = (Rxi) A xJi and na = (RT) A xf i ,  which gives depth 

of each point as a function of the projection and the motion parameters5. Note that it is locally 
smooth away from zero translation. Now redefine the essential space as 

where IR+ is the positive open half space of IR, d;,:, denotes the preimage of d,,,~. Consider @ 
restricted to E. It follows from the properties of the SVD that @ is continuous, and furthermore 
i t  is bijective. It can be shown (see appendix B) that Q E E ++ C = diag{l 1 0) and hence the 

3See equation (8) in the proof for an instance of realization of the triangulation function. 
4We use a hybrid representation, with T being the discrete translation between two successive samples, while 0 the 

instantaneous rotational velocity which corresponds to R. Note that (V, 0 )  and (T, R) are related via the exponential 
map  of equations (1,2). 

5 ~ o t e  that when the triangulation is computed for a large number of points, a "Total Least Squares" solution for 
Z is most appropriate 1181 



subspaces < V.1, V.2 > and < U.1, U.2 > are allowed to switch. This happens, however, without 
affecting continuity of T and 0. The inverse map is simply 

which is smooth. Hence E is a topological manifold of class at  least Co. Q.E.D. 

Remark 5.1 Note that the essential manifold is defined independently of the existence of observed 
points, as a compact representation of SE(3), the former being embedded in a linear space of smaller 
dimension. However, in  order E to qualify as a manifold, we need to take into account at least 
one visible point. This is done by imposing the '$positive depth constraint", i.e. imposing that the 
visible points have positive depth in both the coordinate frames at time t and t + a.  

If we let T + O in the above construction, under the small acceleration assumption we may write 
the essential constraint as 

which represents a system in exterior differential form [7]: f (x )dx  = 0, with f(x)  = ( ~ ~ 2 ) ~ .  
Hence motion estimation may be viewed as identification of a linear exterior diflerential system, 
with parameters on the essential manifold. Note that observability/identifiability of the above 
model is independent of the euclidean structure, for it depends solely on the projective coordinates 
of the points. Note also that the role of structure (depth) is to allow us choosing one of the four 
branches of the local coordinates chart. This needs to be done only at one time step, and then 
propagated across time. 

5.2 Observability for N 2 8 points 

Since the essential constraint is linear in Q,  it is possible to  write it using the (improper) notation 

where x is a n x 9 matrix and Q is interpreted as a nine-vector obtained by stacking the columns 
of $ on top of each other. The generic row of x is [xlxi  2 2 2 :  x i  x l x i  x2x i  x; X I  2 2  1 1. We write 

T x - [ x l . .  .x,] s 

Following the track of the previous sections, we will assume small acceleration or a statistical 
model for motion which, lifted to the essential manifold, results in a statistical model for Q .  The 
resulting model has the form 

where f is either zero or some statistical model; UQ and v, are noise processes which can be charac- 
terized, as discussed in [48]. In [47], two recursive schemes are proposed for solving the estimation 
problem: one is based upon an Implicit Extended Kalman Filter (IEKF) in the local coordinates 
of the essential manifold, the other is based upon a linear update on the linear embedding space 
Et9, followed by a projection onto the essential manifold. 



Now consider X: if it has rank 8, then there exists a unique Q which spans its null space modulo 
a sign, since we have imposed a constraint on its norm. This generates four distinct points in the 
local coordinates which reduce to a single solution once the positive depth constraint is imposed. 
Once this is done a t  one step, we choose a branch of the local coordinates map (which then becomes 
a local homeomorphism) and stick with it for the subsequent time steps [34, 50, 151. 

We are led naturally to the following definition: 

Definition 5.1 We say the points x are in general position 6 r a n k ( x ( x , x ) )  = 8, 

Note that the general position condition also depends on motion. The following are tautologies 
which come as a direct consequence of the definitions: 

Claim 5.1 The essential model is observable/identifiable modulo a sign under general position 
conditions. 

Claim 5.2 If an essential model is in general position then it is possible to reconstruct the motion 
(V, 0) of the viewer modulo four solutions. The solution is unique once the positive depth constraint 
is imposed at one time instant. 

We still have to address the issue of the conditions under which the matrix x has full rank. 
Furthermore we need to deal with the case of less than 8 visible points, since it automatically 
excludes general position conditions. 

5.3 Observabilidy with less than 8 points 

When less than 8 points are visible, it is not possible to achieve the above sufficient conditions for 
motion observabihity. Suppose that, at  time t f r;, the matrix ~ ( t  + ri) has a null space of dimension 
ki. If the viewer moves with constant velocity, then we may write 

until ko + kl + . . . + k p  = 8. If this happens, we may go back to the previous case and restate the 
sufficient conditions for motion observability for the extended matrix 

Of course this may not happen. As a consequence of the above observations, we redefine general 
position as follows: 

Deenition 5.2 We say an essential model is in general position (GP} when either there are more 
than 8 visible points and x has rank 8, or there exists a time instant rP such that the extended 
matrix X p  has rank 8. 

Then we may restate the sufficient conditions for observability as a new tautology 

Theorem 5.2 If an essential model is in general position, then it is globally observable. 



5.4 General position: rank condition for global observability of rigid motion 

We are now interested in writing explicitly the general positions condition and promote the previous 
tautologies to  true claims. This is done using results in [35, 15, 501 for the case of more than 8 
points. The claim, extended to our general position condition, may be stated as: 

Theorem 5.3 An  essential model is in general position there does not exist a (proper) 
quadric surface6 in IR3 which contains all the visible points and the path of the center of projection. 

Remark 5.2 We report here a proof given by Mennucci [38] for the case of more than 8 visible 
points. See also [35]. The general case is obtained by substituting xt+, for xi. Note that the 
quadric surface is a thin set in the 3B euclidean space. The measurement noise in the projected 
coordinates is suficient to set the model in general position. Note also that T # 0 plays a critical 
role in  achieving global observability, while R (or R) is uninjluent. 

Proof: 
Let T # 0. Consider the points to be fixed in an intermediate reference system, where their 
coordinates are (Xf)  such that Xi = R(Xf - T), Xi = R~(x:  + T); then X;~$X; = 0 1 5 i 5 n ,  
and the same holds for x in place of X. 
By substitution we get 

We may change the variable in this equation to be Q' = R ~ Q R ~ ;  since R is invertible, this would 
not change any of the considerations below. Note that this implies that there is no dependency on 
rotation; we will therefore assume R = I without loss of generality. 
Equation (9) becomes 

Call < Q >- { Q  E R~~~ I (x! - T)~Q(x! + T )  = 0, 1 5 i 5 n ) ;  < Q > is a vector subspace 
of R3X3, and the fact that there is only one solution is equivalent to saying that the dimension of 
< Q > is one; indeed, dim(< Q >) is always bigger or equal than one, since it contains the matrix 
TA, as can be seen by direct substitution in eq. (10). 
Suppose that the equation (9) holds for a matrix M, and decompose it in the symmetric and 

M - M T  S = w, then antisymmetric part A = -7, 

Consider the set < V >- { x  E R3 I xTSx - 2 T T ~ x  - TTST = 0). This set always contains the 
two points T and -T, the centers of projection (as a simple computation shows). 
Suppose there is no (proper) quadric surface containing the points x:; then it must be that V = IR3, 
that  means that S = 0 and T ~ A  = 0; this means that M is necessarily a multiple of T A  = Q, so 
we get that dim(< Q >) = 1. 

Viceversa, suppose that the symmetric part S of M is nonzero or that T T A  # 0: then the set 
< V > is a quadric surface that contains the points XI' (by definition), and it contains the points 
T and -T; the latest are the two centers of projection (if the symmetric part S = 0, then the set 
{x E EL3 ( TTAx = 0) is a plane, that is anyway a quadric surface). Q.E.D. 

6A quadric surface is a set {x E lR3X3 I xtAx + btx + c = 0) where A is a 3 x 3 matrix, b is a 3-vector and c is a 
scalar. It is proper if it is  a proper subset of lR3. 
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6 Conclusions 

We have analyzed the observability of rigid motion under projection. The model which defines the 
problem for feature points in the euclidean 3D space lacks of local observability. The observable 
manifold is covered with three levels of lie differentiation. The problem is indeed observable once 
formulated in the appropriate topological space. 

We have studied a formulation of visual motion estimation in terms of identification of an 
Exterior Differential System with parameters on the essential manifold [47]. The model is globally 
observable/identifiable with zero level of bracketing; when more points are available, redundancy 
may be exploited to reduce the effect of measurement noise. 
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A Notation 

In this section we introduce some notation, referring to [40, 45, 33, 32, 251, for the system: 

where z E N C Rn, some n-dimensional manifold, u E A4 c Rm and y E P c R p ;  it is assumed 
that f and h are smooth functions. The set of admissible inputs is described as U + { u  : R+ -+ 
P c R P )  such that 

1. U is closed under concatenation 

2. f describes a family of vector fields parametrized by Ti E P. 

3. u are piecewise constant functions which are piecewise continuous from the right: 

~ ( t ) &  {ai  for  t E Ii = [tl + ...+ ti-i,tl + . . . + t i )  ( iii E P c IRP , V i ) .  

We call fi + f ( x ,  a;); in the time interval Ii the system evolves along the integral curve of fi. The 
above assumptions may be partially released; however, they are general enough for our purposes. 
In studying the visual motion problem, we will be mostly concerned with the autonomous case: 
u ( t )  = 0 Vt. 

Definition A.1 x l  and x2 are said to be indistinguishable (and denoted with x11x2) 4 VU E U, 
h ( # t ( ~ l ,  u ) )  = h(#t (x2 ,u))  V t  2 0. 
P(x)  jx; / X ~ I X  ; s E 1V) is the set of states which care indistinguishable f ~ o m  x .  

Definition A.2 (*) is  completely observable ((7-0) at 6 I ( x )  = { x ) .  
(*) is completely observable 4 it is C - 0  at x V x E N .  

Definition A.3 Given an open set U C N ,  xl  and 2 2  are said to be U-indistinguishable (and de- 

noted with x l l u x z )  6 {# t (x l ,  u )  E U, ( b t ( ~ 2 7  U )  E U Vt  E [to7 t l ] )  =j h((bt(x1, u ) )  = h ( h ( x 2 ,  u ) )  b't E 
t l ] .  

I U ( x )  G {x i  I x;.lUx) is the set of states which are U-indistinguishable from x. 

Definition A.4 (*) i s  said to be locally weakly observable (L- W - 0 )  &x 6 3U7 z E U ( V V  C 
u , x  E v, P ( x )  = ( 2 ) .  
(+) is said to be locally weakly observable 5 it is L - W - 0  at x V x  E N .  

Definition A.5 The observability space O for (*) is defined to be the smallest subspace o f C w ( N )  
which contains the functions {hl  . . . h p )  and is invariant under lie diflerentiation along vector fields 
in a + { f i  = f ( x , a i ) ) .  

Definition A.6 The observability codistribution is defined as 

dO 5 {dX I X E 0)  

The observability codistribution is the smallest codistribution which is invariant for (*) and contains 
the forms dh. It can be shown that the definition does not change if we allow the vector fields in T 

to  belong to the accessibility algebra, which consists of repeated lie brackets of vector fields in r. 



Definition A.7 A system is said to satisfy the observability rank condition (ORC) at p d im(dO)p  = 
n .  

Remark A.l The ORC can be stated i n  terms of exterior dinerential systems. I n  fact we may 
interpret the observability codistribution as a Pfafian system [?'I 

where f G f ( a ,  a), n is the dimension of the state-space manifold N .  The observability rank condi- 
t ion may be state as: 

Definition A.8 . 
The  system (*) satisfies the observability rank condition at p d o p  = Tp"N 

Theorem A.1 I f  dim ( 8 )  = n at p, then (*) is locally weakly observable i n  a neighborhood o f p .  

Proof: 
see [41, 28, 91 This condition is not necessary [9]; however, the following result holds: 

Theorem A.2 I f  l f  has constant dimension and the system (*) is locally weakly observable, then 
rank (0) = n. 

B Characterization of the essential space 

The essential space has been defined in section 5; in this appendix we show a simple characterization 
which is due to  Faugeras and Maybank [15, 371. 

Theorem B.l . 
Let Q = UCVT be the SVD of an element of Then 

Proof: 

(+) let Q = RSlR E S0(3),  S E 4 3 ) ;  u(Q) ,  the set of singular values of Q, is such that a(Q) = 
d m .  Next observe that QQT = RSSTRT = §ST = -S2. Also V S  E so(3)3!T I S = 
(TA), and the singular values of S2 are (0, llT112, llT112). Hence if Q E E, it has two equal 
singular values and a zero singular value. 

(e) let Q = UCoVT for some orthonormal U, V and for some A. Let furthermore Rz(q) be a 
rotation of about the Z axis, then 

Now call R - U R Z ( ; ) ~ V ~  and S 2 VRz($)CoVT; it is immediate to see that = 
R ~ R  = 4 and ST = -S, hence the claim. Q.E.D. 


